Story image

Opinion: Looking beyond traditional security for HCI

23 Oct 2018

Article by Bitdefender senior e-threat analyst Liviu Arsene

Simplicity is what makes hyperconverged infrastructure (HCI) attractive.

Not only does it streamline the data centre landscape, it offers increased ROI on data investment, the ability to facilitate agile service provisioning and scalability to match with even the most high-growth company’s aspirations.

But, as the data centre landscape changes, the essential and underpinning tech surrounding it has to evolve as well — and this includes security.

The end of three-layer infrastructure

HCI has taken the traditional three-tier data centre infrastructure — centred around separate compute, storage and networking — and condensed it into a signal foundation that incorporates virtualisation, management and data services.

The removal of complexity within the layers, in turn, is helping to significantly shorten enterprise’s long journey from hardware to a software-based hybrid cloud model and streamlining administrative tasks of IT departments.

This new design, also leaves behind the network-based security model, instead embracing application based security policies that let workloads work with each other across network segments.

Using application-aware security ensures that security policies are enforced automatically across any network configuration. This is not based on location, as with traditional infrastructure, but instead on the workload’s role — making security faster, more scalable and effective.

Traditional security vs performance  

Previously, legacy and or enterprise-class infrastructure would rely on a firewall to protect both users and workloads from compromise.

This traditional approach of hardware-centric infrastructure that requires full-scale agents running on each endpoint simply slows systems down too much for the modern enterprise.

It’s also not scalable with the constant addition of extra endpoints. HCI, on the other hand, can enable centralised security controls while deploying light security agents – or no agents at all – and doesn’t hamper the performance of virtual workloads.

Security for HCI does require some consideration. For example, companies have to take into account the security solution’s ability to seamlessly integrate with the infrastructure, and keep in mind that it shouldn’t burden virtual workloads.

Otherwise, poor performance will deter an organisation from adopting HCI and fully leveraging its capability and scalability benefits.

To find a solution, companies need to look at creating a “smart” infosec toolset that uses machine learning algorithms to address the ever-increasing wave of threats and attack vectors while also being custom-built for modern software-defined data centre (SDDC) deployments.

This is done by creating layered cybersecurity solutions that protect against a wide range of threats.

Automation is key

The issue is that some security vendors rely purely on machine learning as the only security defence.

While machine learning has revolutionised the cybersecurity space, in reality, it’s more of a tool rather than a stand-alone defence mechanism.

What sets it apart from traditional security is that it offers a proactive approach, meaning that it can improve the efficacy and performance of existing security layers — but there is no single machine learning algorithm that’s capable of fending off all cyber-attacks.

Automation through machine learning, instead allows IT and security teams to focus on the strategic value and impact of security decisions rather than constantly fighting alert fatigue.

For example, analytics have traditionally had a place within data centre security as they enable organisations to identify potentially anomalous behaviour within a network that could be indicative of a data breach.

They also help both IT and security teams plan appropriate incident response plans and identifying spikes in computing resource consumption, which is usually associated with cryptojackers.

Automating this process through machine learning means that these insights not only help protect data centres from security threats but also helps with the planning of security and improving its efficiency.

Automation also saves costs as incidents will no longer be individually reported to the security team but assessed en masse based on severity and escalated to IT and security team members if needed.

Embracing digitalisation

Legacy security agents also sacrifice 35% of the CPU capacity when converting to HCI, resulting again in hindered performance and virtualisation density.

The shift from hardware to software is intended to allow organisations to fully embrace digitalisation, agility, and automation, allowing organisations to focus on growth but without updating security systems, it’s likely to inhibit rather than enable digital transformation.

Considering that HCI is built around agility and fast deployment, the selected security system should always follow the same principles.

Technology has to be built in a way that’s flexible and caters to the ever-evolving world of today — security models are no exception.

In order to cope with the rapid change of software-defined environments organisations have to look at updating existing systems and harnesses the power of machine learning because traditional security systems are simply not good enough.

Protecting data centres from fire – your options
Chubb's Pierre Thorne discusses the countless potential implications of a data centre outage, and how to avoid them.
Opinion: How SD-WAN changes the game for 5G networks
5G/SD-WAN mobile edge computing and network slicing will enable and drive innovative NFV services, according to Kelly Ahuja, CEO, Versa Networks
TYAN unveils new inference-optimised GPU platforms with NVIDIA T4 accelerators
“TYAN servers with NVIDIA T4 GPUs are designed to excel at all accelerated workloads, including machine learning, deep learning, and virtual desktops.”
AMD delivers data center grunt for Google's new game streaming platform
'By combining our gaming DNA and data center technology leadership with a long-standing commitment to open platforms, AMD provides unique technologies and expertise to enable world-class cloud gaming experiences."
Inspur announces AI edge computing server with NVIDIA GPUs
“The dynamic nature and rapid expansion of AI workloads require an adaptive and optimised set of hardware, software and services for developers to utilise as they build their own solutions."
365 Data Centers secures additional funding for expansion
The company asserts the financing commitments come as it looks to invest in further substantial internal and external growth.
HPE launches 'right mix' hybrid cloud assessment tool
HPE has launched an ‘industry-first assessment software’ to help businesses work out the right mix of hybrid cloud for their needs.
ADLINK and Charles announce multi-access pole-mounted edge AI solution
The new solution is a compact low profile pole or wall mountable unit based on an integration of ADLINK’s latest AI Edge Server MECS-7210 and Charles’ SC102 Micro Edge Enclosure.